Anisotropic colloidal interactions & assembly in AC electric fields

Soft Matter. 2021 Oct 20;17(40):9066-9077. doi: 10.1039/d1sm01227d.

Abstract

We match experimental and simulated configurations of anisotropic epoxy colloidal particles in high frequency AC electric fields by identifying analytical potentials for dipole-field and dipole-dipole interactions. We report an inverse Monte Carlo simulation algorithm to determine optimal fits of analytical potentials by matching simulated and experimental distribution functions for non-uniform liquid, liquid crystal, and crystal microstructures in varying amplitude electric fields. Two potentials that include accurate particle volume and dimensions along with a concentration dependent prefactor quantitatively capture experimental observations. At low concentrations, an effective ellipsoidal point dipole potential works well, whereas a novel stretched point dipole potential is found to be suitable at all concentrations, field amplitudes, and degrees of ordering. The simplicity, accuracy, and adjustability of the stretched point dipole potential suggest it can be applied to model field mediated microstructures and assembly of systematically varying anisotropic particle shapes.