Reference gene screening for analyzing gene expression in the heart, liver, spleen, lung and kidney of forest musk deer

J Vet Med Sci. 2021 Nov 16;83(11):1750-1759. doi: 10.1292/jvms.21-0281. Epub 2021 Oct 7.

Abstract

The screening of reference genes for real-time quantitative PCR (qPCR) in forest musk deer (FMD) tissue is of great significance to the basic research on FMD. However, there are few reports on the stability analysis of FMD reference genes so far. In this study, We used qPCR to detect the expression levels of 11 reference gene candidates (18S rRNA, beta-actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box-binding protein [TBP], hypoxanthine phosphoribosyltransferase 1 [HPRT1], tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta polypeptide [YWHAZ], hydroxymethylbilane synthase [HMBS], eukaryotic translation elongation factor 1 alpha 1 [EEF1A1], succinate dehydrogenase complex flavoprotein subunit A [SDHA], peptidylprolyl isomerase B [PPIB], and ubiquitin C [UBC]) in heart, liver, spleen, lung and kidney of FMD. After removing 18S rRNA on account of its high expression level, geNorm, NormFinder, BestKeeper and ΔCt algorithms were used to evaluate the expression stability of the remaining genes in the five organs, and further comprehensive ranking was calculated by RefFinder. According to the results, the selected reference genes with the most stable expression in the heart of FMD are SDHA and YWHAZ, while in the liver are ACTB and SDHA; in the spleen and lung are YWHAZ and HPRT1; in the kidney are YWHAZ and PPIB. The use of common reference genes in all five organs is not recommended. The analyses showed that tissue is an important variability factor in genes expression stability. Meanwhile, the result can be used as a reference for the selection of reference genes for qPCR in further study.

Keywords: expression stability; forest musk deer; reference genes.

MeSH terms

  • Animals
  • Deer* / genetics
  • Forests
  • Gene Expression
  • Gene Expression Profiling* / veterinary
  • Kidney
  • Liver
  • Lung
  • Real-Time Polymerase Chain Reaction / veterinary
  • Reference Standards
  • Spleen