Synchronization using quantum photons for satellite-to-ground quantum key distribution

Opt Express. 2021 Sep 13;29(19):29595-29603. doi: 10.1364/OE.433631.

Abstract

Time synchronization is crucial for quantum key distribution (QKD) systems. In order to compensate for the time drift caused by the Doppler effect and adapt to the unstable optical link in satellite-to-ground QKD, previous demonstrations generally adopted synchronization methods requiring additional hardware. In this paper, we present a novel synchronization method based on the detected quantum photons, thus simplifying additional hardware and reducing the complexity and cost. This method adopts target frequency scanning to realize fast frequency recovery, utilizes polynomial fitting to compensate for the Doppler effect, and takes use of the vacuum state in the decoy-state BB84 protocol to recover the time offset. This method can avoid the influence of synchronization light jitter, thus improving the synchronization precision and the secure keys as well. Successful satellite-to-ground QKD based on this new synchronization scheme has been conducted to demonstrate its feasibility and performance. The presented scheme provides an effective synchronization solution for quantum communication applications.