Ultra-broadband contactless imaging power meter

Appl Opt. 2021 Sep 10;60(26):7995-8005. doi: 10.1364/AO.432479.

Abstract

Knowledge of the spatial and temporal distribution of heat flux is of great interest for the quantification of heat sources. In this work, we describe the development of a new ultra-broadband contactless imaging power meter based on electromagnetic to infrared technology. This new sensor and the mathematical processing of images enable the reconstruction of both spatial and amplitude distributions through a wide spectral range of sources. The full modeling of the thermoconverter based on 3D formalism of thermal quadrupoles is presented first before deriving a reduced model more suitable for quick and robust inverse processing. The inverse method makes it possible to simultaneously identify the heat losses and the spatial and temporal source distribution for the first time, to the best of our knowledge. Finally, measurements of multispectral sources are presented and discussed, with an emphasis on the spatial and temporal resolution, accuracy and capabilities of the power meter.