Strategies for Engineering Affordable Technologies for Point-of-Care Diagnostics of Infectious Diseases

Acc Chem Res. 2021 Oct 19;54(20):3772-3779. doi: 10.1021/acs.accounts.1c00434. Epub 2021 Oct 6.

Abstract

Disease prevalence is highest in low-resource settings (LRS) due to the lack of funds, infrastructure, and personnel required to carry out laboratory-based molecular tests. In high-resource settings, gold-standard molecular tests for diseases consist of nucleic acid amplification tests (NAATs) due to their excellent sensitivity and specificity. These tests require the extraction, amplification, and detection of nucleic acids from clinical samples. In high-resource settings, all three of these steps require highly specialized, costly, and onerous equipment that cannot be used in LRS. Nucleic acid extraction involves multiple centrifugation steps. Amplification consists of the polymerase chain reaction (PCR), which requires thermal cyclers. The detection of amplified DNA is typically done with specialized thermal cyclers that are capable of fluorescence detection. Traditional methods used to extract, amplify, and detect nucleic acids cannot be used outside of a laboratory in LRS. Thus, there is a need for affordable point-of-care devices to ease the high burden of disease in LRS.The past decade of work on paper-based fluidic devices has resulted in the invention of many paper-based biosensors for disease detection as well as isothermal amplification techniques that replace PCR. However, a challenge still remains in detecting pathogenic biomarkers from complex human samples without specialized laboratory equipment. Our research has focused on the development of affordable technologies to extract and detect nucleic acids in clinical samples with minimal equipment. Here we describe methods for the paper-based extraction, amplification, and detection of nucleic acids. This Account provides an overview of our latest technologies developed to detect an array of diseases in low-resource settings. We focus on detecting nucleic acids of H1N1, human papillomavirus (HPV), Neisseria gonorrheae (NG), Chlamydia trachomatis (CT), Trichomonas vaginalis (TV), and malaria from a variety of clinical sample types. H1N1 RNA was extracted from nasopharyngeal swabs; HPV, NG, and CT DNA were extracted from either cervical, urethral, or vaginal swabs; TV DNA was extracted from urine; and malaria DNA was extracted from whole blood. Different sample types necessitate different nucleic extraction protocols; we provide guidelines for assay design based on the clinical sample type used. We compare the pros and cons of different isothermal amplification techniques, namely, helicase-dependent amplification (HDA), loop-mediated isothermal amplification (LAMP), and a novel isothermal amplification technique that we developed: isothermal-identical multirepeat sequences (iso-IMRS). Finally, we compare various detection mechanisms, including lateral-flow and electrochemical readouts. Electrochemical readouts frequently employ gold electrodes due to strong gold-thiol coupling. However, the high cost of gold precludes their use in LRS. We discuss our development of novel gold leaf electrodes that can be made without specialized equipment for a fraction of the cost of commercially available gold electrodes.

Publication types

  • Review

MeSH terms

  • Communicable Diseases / diagnosis*
  • Humans
  • Nucleic Acid Amplification Techniques*
  • Point-of-Care Testing*
  • Polymerase Chain Reaction*