Designing and Demystifying the Lithium Metal Interface toward Highly Reversible Batteries

Adv Mater. 2021 Dec;33(52):e2105962. doi: 10.1002/adma.202105962. Epub 2021 Oct 19.

Abstract

Reversible lithium (Li) plating/stripping is essential for building practical high-energy-density batteries based on Li metal chemistry, which unfortunately remains a severe challenge. In this contribution, it is demonstrated that through the rational regulation of strong Li+ -anion coordination structures in a highly compatible low-polarity solvent, 2-methyl tetrahydrofuran, the Li plating/stripping assisted by a nucleation modulation procedure delivers a remarkably high average Coulombic efficiency under rather demanding conditions (99.7% and 99.5% under 1.0 mA cm-2 , 3.0 mAh cm-2 and 3.0 mA cm-2 , 3.0 mAh cm-2 , respectively). The exceedingly reversible cycling obtained herein is fundamentally correlated with the flattened Li deposition and minimized solid electrolyte interphase (SEI) generation/reconstruction in the customized condition, which notably restrains the growth rates of both dead Li0 (0.0120 mAh per cycle) and SEI-Li+ (0.0191 mAh per cycle) during consecutive cycles. Benefiting from the efficient Li plating/stripping manner, the assembled anode-free Cu|LiFePO4 (2.7 mAh cm-2 ) coin and pouch cells exhibit impressive capacity retention of 43.8% and 41.6% after 150 cycles, respectively, albeit with no optimization on the test conditions. This work provides guidelines into the targeted interfacial design of high-efficiency working Li anodes, aiming to pave the way for the practical deployment of high-energy-density Li metal batteries.

Keywords: Coulombic efficiency; electrolyte regulation; interfacial evolution; lithium metal anodes; solid electrolyte interphase.