Advanced oxidation protein products contribute to chronic kidney disease-induced muscle atrophy by inducing oxidative stress via CD36/NADPH oxidase pathway

J Cachexia Sarcopenia Muscle. 2021 Dec;12(6):1832-1847. doi: 10.1002/jcsm.12786. Epub 2021 Oct 2.

Abstract

Background: Sarcopenia with chronic kidney disease (CKD) progression is associated with life prognosis. Oxidative stress has attracted interest as a trigger for causing CKD-related muscular atrophy. Advanced oxidation protein products (AOPPs), a uraemic toxin, are known to increase oxidative stress. However, the role of AOPPs on CKD-induced muscle atrophy remains unclear.

Methods: In a retrospective case-control clinical study, we evaluated the relationship between serum AOPPs levels and muscle strength in haemodialysis patients with sarcopenia (n = 26, mean age ± SEM: 78.5 ± 1.4 years for male patients; n = 22, mean age ± SEM: 79.1 ± 1.5 for female patients), pre-sarcopenia (n = 12, mean age ± SEM: 73.8 ± 2.0 years for male patients; n = 4, mean age ± SEM: 74.3 ± 4.1 for female patients) or without sarcopenia (n = 12, mean age ± SEM: 71.3 ± 1.6 years for male patients; n = 7, mean age ± SEM: 77.7 ± 1.6 for female ). The molecular mechanism responsible for the AOPPs-induced muscle atrophy was investigated by using 5/6-nephrectomized CKD mice, AOPPs-overloaded mice, and C2C12 mouse myoblast cells.

Results: The haemodialysis patients with sarcopenia showed higher serum AOPPs levels as compared with the patients without sarcopenia. The serum AOPPs levels showed a negative correlation with grip strength (P < 0.01 for male patients, P < 0.01 for female patients) and skeletal muscle index (P < 0.01 for male patients). Serum AOPPs levels showed a positive correlation with cysteinylated albumin (Cys-albumin), a marker of oxidative stress (r2 = 0.398, P < 0.01). In the gastrocnemius of CKD mice, muscle AOPPs levels were also increased, and it showed a positive correlation with atrogin-1 (r2 = 0.538, P < 0.01) and myostatin expression (r2 = 0.421, P < 0.05), but a negative correlation with PGC-1α expression (r2 = 0.405, P < 0.05). Using C2C12 cells, AOPPs increased atrogin-1 and myostatin expression through the production of reactive oxygen species via CD36/NADPH oxidase pathway, and decreased myotube formation. AOPPs also induced mitochondrial dysfunction. In the AOPPs-overloaded mice showed that decreasing running time and hanging time accompanied by increasing AOPPs levels and decreasing cross-sectional area in gastrocnemius.

Conclusions: Advanced oxidation protein products contribute to CKD-induced sarcopenia, suggesting that AOPPs or its downstream signalling pathway could be a therapeutic target for the treatment of CKD-induced sarcopenia. Serum AOPPs or Cys-albumin levels could be a new diagnostic marker for sarcopenia in CKD.

Keywords: Advanced oxidation protein products; Albumin; Biomarker; Chronic kidney disease; Muscle atrophy; Oxidative stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Advanced Oxidation Protein Products / metabolism
  • Animals
  • CD36 Antigens
  • Female
  • Humans
  • Male
  • Mice
  • NADPH Oxidases / metabolism
  • Oxidative Stress
  • Oxidoreductases
  • Renal Insufficiency, Chronic* / complications
  • Retrospective Studies
  • Sarcopenia* / etiology

Substances

  • Advanced Oxidation Protein Products
  • CD36 Antigens
  • Oxidoreductases
  • NADPH Oxidases