Seed traits and rodent community interact to determine seed fate: evidence from both enclosure and field experiments

Integr Zool. 2021 Nov;16(6):939-954. doi: 10.1111/1749-4877.12596. Epub 2021 Oct 27.

Abstract

Animal-mediated seed dispersal is an important ecological process in which a strong mutualism between animals and plants can arise. However, few studies have examined how a community of potential seed dispersers interacts with sympatric seed trees. We employed a series of experiments in the Qinling Mountains in both semi-natural enclosure and the field to assess the interactions among 3 sympatric rodent species and 3 Fagaceae tree seeds. Seed traits all showed similar tannin levels but markedly different physical traits and nutritional contents. We found that seeds with heavy weight, thick coat, and high nutritional contents were less likely to be eaten in situ but more often to be eaten after dispersal or hoarded by rodents. These results support both the handling time hypothesis and the high nutrition hypothesis. Surprisingly, we also found that rodents, maybe, preferred to consume seeds with low levels of crude fiber in situ, and to harvest and hoard those with high levels of crude fiber for later consumption. The sympatric rodent species, Cansumys canus, the largest rodent in our study, harvested and hoarded more Quercus variabilis seeds with high physical and nutritional traits, while Apodemus draco, the smallest rodent, harvested more Q. serrata seeds with low physical and nutritional traits, and Niviventer confucianus harvested and hoarded more Q. aliena seeds with medium physical and nutritional traits. Our study demonstrates that different seed traits play different roles in influencing the seed fate and the shaping of mutualism and predation interactions within a community of rodent species.

Keywords: hoarding behavior; seed dispersal; seed fate; seed traits; semi-natural enclosure.

MeSH terms

  • Animals
  • Ecosystem*
  • Feeding Behavior / physiology*
  • Quercus / physiology*
  • Rodentia / physiology*
  • Seeds*