Effects of Bacillus spp. Mixture on Growth, Immune Responses, Expression of Immune-Related Genes, and Resistance of Nile Tilapia Against Streptococcus agalactiae Infection

Probiotics Antimicrob Proteins. 2023 Apr;15(2):363-378. doi: 10.1007/s12602-021-09845-w. Epub 2021 Oct 1.

Abstract

The purpose of this study was to evaluate the effect of Bacillus spp. mixture (Bacillus subtilis TISTR001, Bacillus megaterium TISTR067, and Bacillus licheniformis DF001) (1 × 106 CFU/g) on growth, immune parameters, immune-related gene expression, and resistance of Nile tilapia against Streptococcus agalactiae AAHM04. Fish were fed different concentrations of Bacillus spp. 0 (control; T1), 1 (T2), 3 (T3), and 5 (T4) g/kg diets for 120 days. The results showed that weight gain, average daily gain, specific growth rate, feed conversion ratio in T3 diet were significantly higher than the control group and other tested diets (p < 0.05). Immune parameters, such as myeloperoxidase and lysozyme, were significantly higher in the T3 and T4 diets compared to the control group (p < 0.05). Similarly, IL-1β and TNF-α gene expressions in the spleen of fish fed T2, T3, and T4 diets were significantly higher than the control group (p < 0.05). However, no significant differences in survival rate, hematology, blood chemical indices, malondialdehyde (MDA) levels, body chemical composition, and organosomatic indices (p > 0.05) were noticed in all treatments. No significant differences in survival rate after the challenge test with S. agalactiae AAHM04 were found in fish fed Bacillus spp. mixture diets, except for the T3 diet. These results suggest that Bacillus spp. mixture diet at 3 g/kg diet (T3) could improve growth, immune response, and disease resistance of Nile tilapia.

Keywords: Bacillus spp.; Disease resistance; Gene expression; Nile tilapia; Probiotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed / analysis
  • Animals
  • Bacillus* / genetics
  • Cichlids*
  • Diet
  • Dietary Supplements
  • Disease Resistance
  • Probiotics* / pharmacology
  • Streptococcal Infections* / veterinary
  • Streptococcus agalactiae