Pseudooceanicola endophyticus sp. nov., a novel endophytic bacterium isolated from bark Aegiceras corniculatum

Int J Syst Evol Microbiol. 2021 Oct;71(10). doi: 10.1099/ijsem.0.005036.

Abstract

A Gram-stain-negative, aerobic, short-rod-shaped bacterium, designated strain CBS1P-1T, was isolated from a surface-sterilized bark of Aegiceras corniculatum. Growth of strain CBS1P-1T was observed with between 0 and 12.0 % (w/v) NaCl (optimally with 5.0 %) and at between pH 6.0-9.0. It grew at temperatures between 25-37 °C (optimum, 30 °C). Chemotaxonomic analysis showed that ubiquinone-10 was the respiratory quinone. The lipids comprised diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, an unidentified phospholipid and an unidentified aminolipid. The major fatty acids of strain CBS1P-1T were C18 : 1 ω7c, C16 : 0 and C19 : 0 cyclo ω8c. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain CBS1P-1T was most related to Pseudooceanicola antarcticus CGMCC 1.12662T with a sequence similarity of 96.5 %. The average nucleotide identity and digital DNA-DNA hybridization values between strain CBS1P-1T and P. antarcticus 1.12662T were 77.5 and 21.1 %, respectively. The G+C content of the genomic DNA was 67.3 mol%. Based on phylogenetic, chemotaxonomic and phenotypic data, strain CBS1P-1T is considered to represent a novel species of the genus Pseudooceanicola, for which the name Pseudooceanicola endophyticus is proposed. The type strain is CBS1P-1T (=KCTC 62836T=CGMCC 1.13743T).

Keywords: Aegiceras corniculatum; Pseudooceanicola endophyticus; endophytic bacterium; novel species.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • Plant Bark / microbiology*
  • Primulaceae* / microbiology
  • RNA, Ribosomal, 16S / genetics
  • Rhodobacteraceae* / classification
  • Rhodobacteraceae* / isolation & purification
  • Sequence Analysis, DNA

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S