lncRNA NEAT1 regulates CYP1A2 and influences steroid-induced necrosis

Open Life Sci. 2021 Sep 13;16(1):969-980. doi: 10.1515/biol-2021-0097. eCollection 2021.

Abstract

The main cause of steroid-induced necrosis of femoral head (SNFH) is excessive glucocorticoid (GC) intake. The aim of this article was to investigate the role of lncRNA NEAT1 as a molecular sponge to adsorb miR-23b-3p and regulate CYP1A2 in SNFH. Fluorescence in situ hybridization was used to localize lncRNA NEAT1. Human bone marrow mesenchymal stem cells (hBMSCs) were collected from patients with SNFH. The expression of lncRNA NEAT1, miR-23b-3p and CYP1A2 in hBMSCs were intervened. Compared to the control group, the lncRNA NEAT1 and CYP1A2 expression in the SNFH group was increased, while miR-23b-3p expression was decreased. GCs could inhibit the osteogenic differentiation of hBMSCs and upregulate the expression of lncRNA NEAT1. Knockdown of lncRNA NEAT1 could promote the proliferation and osteogenic differentiation of hBMSCs in the SNFH group. Overexpression of miR-23b-3p could partially counteract the effect of lncRNA NEAT1 on hBMSCs. CYP1A2 was confirmed to be a target of miR-23b-3p. Overexpression of CYP1A2 could partially rescue the effect of miR-23b-3p overexpression on hBMSCs. In conclusion, lncRNA NEAT1 as a ceRNA can adsorb miR-23b-3p and promote the expression of CYP1A2, which then inhibits the osteogenic differentiation of hBMSCs and promotes the progress of SNFH.

Keywords: SNFH; hBMSCs; lncRNA NEAT1; osteogenic differentiation.