First Experience of Three Neurovascular Centers With the p64MW-HPC, a Low-Profile Flow Diverter Designed for Proximal Cerebral Vessels With Antithrombotic Coating

Front Neurol. 2021 Sep 14:12:724705. doi: 10.3389/fneur.2021.724705. eCollection 2021.

Abstract

Background: In the last decade, flow diversion (FD) has been established as hemodynamic treatment for cerebral aneurysms arising from proximal and distal cerebral arteries. However, two significant limitations remain-the need for 0.027" microcatheters required for delivery of most flow diverting stents (FDS), and long-term dual anti-platelet therapy (DAPT) in order to prevent FDS-associated thromboembolism, at the cost of increasing the risk for hemorrhage. This study reports the experience of three neurovascular centers with the p64MW-HPC, a FDS with anti-thrombotic coating that is implantable via a 0.021" microcatheter. Materials and methods: Three neurovascular centers contributed to this retrospective analysis of patients that had been treated with the p64MW-HPC between March 2020 and March 2021. Clinical data, aneurysm characteristics, and follow-up results, including procedural and post-procedural complications, were recorded. The hemodynamic effect was assessed using the O'Kelly-Marotta Scale (OKM). Results: Thirty-two patients (22 female, mean age 57.1 years) with 33 aneurysms (27 anterior circulation and six posterior circulation) were successfully treated with the p64MW-HPC. In 30/32 patients (93.75%), aneurysmal perfusion was significantly reduced immediately post implantation. Follow-up imaging was available for 23 aneurysms. Delayed aneurysm perfusion (OKM A3: 8.7%), reduction in aneurysm size (OKM B1-3: 26.1%), or sufficient separation from the parent vessel (OKM C1-3 and D1: 65.2%) was demonstrated at the last available follow-up after a mean of 5.9 months. In two cases, device thrombosis after early discontinuation of DAPT occurred. One delayed rupture caused a caroticocavernous fistula. The complications were treated sufficiently and all patients recovered without permanent significant morbidity. Conclusion: Treatment with the p64MW-HPC is safe and feasible and achieves good early aneurysm occlusion rates in the proximal intracranial circulation, which are comparable to those of well-established FDS. Sudden interruption of DAPT in the early post-interventional phase can cause in-stent thrombosis despite the HPC surface modification. Deliverability via the 0.021" microcatheter facilitates treatment in challenging vascular anatomies.

Keywords: HPC; anti-platelet therapy; flow diverter; hydrophilic coating; navigability; p64MW-HPC.