c-Myc-driven Hepatocarcinogenesis

Anticancer Res. 2021 Oct;41(10):4937-4946. doi: 10.21873/anticanres.15307.

Abstract

Background/aim: Dysregulation of the c-Myc gene is frequently found in human hepatocellular carcinoma (HCC), often accompanied by genetic and epigenetic alterations in other cancer-related genes. Here, we investigated the tumorigenic potential of c-Myc in diverse genetic environments in which the Ras, Wnt/β-catenin, Sonic hedgehog, or P53 pathways were either activated or inactivated.

Materials and methods: Hydrodynamic tail vein injection was employed to administer expression transposons and generate transgenic livers expressing c-Myc together with a constitutively active form of RAS (HRASG12V), β-catenin (β-cateninS33Y), Smo (SmoM2), or short hairpin RNA targeting P53 (shp53).

Results: c-Myc was most tumorigenic when the RAS signaling pathway was activated, whereas no tumors were found in mice when either β-cateninS33Y or SmoM2 was co-expressed with c-Myc. Approximately 40% of mice had HCC when c-Myc was over-expressed under P53 inactivation. Furthermore, we investigated the effect of mutation in c-Myc on hepatocarcinogenesis.

Conclusion: No significant differences in tumorigenic potential were found between wild type c-Myc and c-MycT58A, minimizing the role of the mutation in hepatocarcinogenesis.

Keywords: Hepatocellular carcinoma; c-Myc; c-MycT58A; oncogene; transgenic.

MeSH terms

  • Animals
  • Apoptosis
  • Carcinogenesis / genetics
  • Carcinogenesis / metabolism
  • Carcinogenesis / pathology*
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Proliferation
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Liver Neoplasms, Experimental / genetics
  • Liver Neoplasms, Experimental / metabolism
  • Liver Neoplasms, Experimental / pathology*
  • Mice
  • Mice, Inbred C57BL
  • Proto-Oncogene Proteins c-myc / genetics
  • Proto-Oncogene Proteins c-myc / metabolism*
  • Tumor Cells, Cultured
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Proto-Oncogene Proteins c-myc
  • Tumor Suppressor Protein p53