New lanthanoid biphenolate complexes, their further reactivity with trimethylaluminium and catalytic activity for the polymerisation of rac-lactide

Dalton Trans. 2021 Oct 26;50(41):14653-14661. doi: 10.1039/d1dt02513a.

Abstract

A series of rare earth biphenolate complexes of the general form [Ln(mbmp)(mbmpH)(thf)3] (Ln = Y (1), Nd (2), Gd (3), Dy (4), Er (5), Tm (6) and Lu (7)) have been synthesised by redox transmetallation/protolysis (RTP) from the free rare earth metal, Hg(C6F5)2 and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (mbmpH2). The rare earth metal is six coordinate with one chelating biphenolate mbmp2- ligand and one unidentate monophenolate mbmpH- ligand. The yttrium complex, when crystallised from hot toluene or deuterated benzene, loses a coordinated thf and exhibits coordination through all three phenolate oxygen atoms, as well as the oxygen of the phenol, yielding two solvates [Y(mbmp)(mbmpH)(thf)2nsolv (solv = PhMe, n = 1 (8a) or C6D6, n = 2 (8b)). Of these rare earth complexes, the yttrium derivative (1) yielded the heterobimetallic complex [AlMe2Y(mbmp)2(thf)2] (9) when treated with trimethylaluminium, whereas all other complexes produced the transmetallation product [AlMe(mbmp)(thf)] (11). The dinuclear dysprosium complex [Dy2(mbmp)3(thf)3] (10) was isolated alongside 11 from the reaction of 4 with trimethylaluminium, suggesting trimethylaluminium instigates a redistribution reaction. The ROP activity of the mononuclear neodymium, dysprosium, lutetium, and aluminium complexes towards rac-lactide in toluene at 70 °C was found to be poor compared to rare earth complexes of monodentate aryloxides, but increased with increased rare earth ion size.