Microsecond hydrodynamic interactions in dense colloidal dispersions probed at the European XFEL

IUCrJ. 2021 Jul 28;8(Pt 5):775-783. doi: 10.1107/S2052252521006333. eCollection 2021 Sep 1.

Abstract

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.

Keywords: SAXS; XFELs; XPCS; correlated fluctuations; dynamical studies; free-electron lasers; nanoscience; time-resolved studies.

Grants and funding

This work was funded by Deutsche Forschungsgemeinschaft.