Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network

ACS Nano. 2021 Sep 28;15(9):14419-14429. doi: 10.1021/acsnano.1c03842. Epub 2021 Aug 17.

Abstract

Temporal changes in electrical resistance of a nanopore sensor caused by translocating target analytes are recorded as a sequence of pulses on current traces. Prevalent algorithms for feature extraction in pulse-like signals lack objectivity because empirical amplitude thresholds are user-defined to single out the pulses from the noisy background. Here, we use deep learning for feature extraction based on a bi-path network (B-Net). After training, the B-Net acquires the prototypical pulses and the ability of both pulse recognition and feature extraction without a priori assigned parameters. The B-Net is evaluated on simulated data sets and further applied to experimental data of DNA and protein translocation. The B-Net results are characterized by small relative errors and stable trends. The B-Net is further shown capable of processing data with a signal-to-noise ratio equal to 1, an impossibility for threshold-based algorithms. The B-Net presents a generic architecture applicable to pulse-like signals beyond nanopore currents.

Keywords: deep learning; feature extraction; nanopore sensors; neural network; pulse-like signals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Deep Learning*
  • Nanopores*