Effects of partial replacement of red by green light in the growth spectrum on photomorphogenesis and photosynthesis in tomato plants

Photosynth Res. 2022 Mar;151(3):295-312. doi: 10.1007/s11120-021-00879-3. Epub 2021 Sep 27.

Abstract

The artificial light used in growth chambers is usually devoid of green (G) light, which is considered to be less photosynthetically efficient than blue (B) or red (R) light. To verify the role of G light supplementation in the spectrum, we modified the RB spectrum by progressively replacing R light with an equal amount of G light. The tomato plants were cultivated under 100 µmol m-2 s-1 of five different combinations of R (35-75%) and G light (0-40%) in the presence of a fixed proportion of B light (25%) provided by light-emitting diodes (LEDs). Substituting G light for R altered the plant's morphology and partitioning of biomass. We observed a decrease in the dry biomass of leaves, which was associated with increased biomass accumulation and the length of the roots. Moreover, plants previously grown under the RGB spectrum more efficiently utilized the B light that was applied to assess the effective quantum yield of photosystem II, as well as the G light when estimated with CO2 fixation using RB + G light-response curves. At the same time, the inclusion of G light in the growth spectrum reduced stomatal conductance (gs), transpiration (E) and altered stomatal traits, thus improving water-use efficiency. Besides this, the increasing contribution of G light in place of R light in the growth spectrum resulted in the progressive accumulation of phytochrome interacting factor 5, along with a lowered level of chalcone synthase and anthocyanins. However, the plants grown at 40% G light exhibited a decreased net photosynthetic rate (Pn), and consequently, a reduced dry biomass accumulation, accompanied by morphological and molecular traits related to shade-avoidance syndrome.

Keywords: Green light; Photomorphogenesis; Photosynthesis; Shade-avoidance syndrome; Spectrum optimization.

MeSH terms

  • Anthocyanins
  • Photosynthesis
  • Photosystem II Protein Complex
  • Plant Leaves / physiology
  • Solanum lycopersicum*

Substances

  • Anthocyanins
  • Photosystem II Protein Complex