Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia

Microorganisms. 2021 Aug 25;9(9):1808. doi: 10.3390/microorganisms9091808.

Abstract

Shiga toxin-producing and extra-intestinal pathogenic Escherichia coli (E. coli) have the potential to spread through faecal waste, resulting in contamination of food and causing foodborne disease outbreaks. With the aim of characterizing unpasteurized ovine cheese in Slovakia, a total of 92 E. coli strains were examined for eleven representative virulence genes typical for (extra-)intestinal pathogenic E. coli and phylogenetic grouping. Phylogenetic groups B1 (36%) and A (32%) were the most dominant, followed by groups C (14%) and D (13%), while the lowest incidence was recorded for F (4%), and E (1%), and 43 (47%) samples carried at least one virulent gene, i.e., potential pathogens. Isolates present in groups E, F and D showed higher presence of virulence genes (100%, 75%, and 67%), versus 55%, 39%, and 28% in commensal B1, C, and A, respectively. Occurrence of papC and fyuA (both 24%) was highest, followed by tsh, iss, stx2, cnf1, kpsII, cvaC, stx1, iutA and eaeA. Nine E. coli strains (almost 10% of all tested and around 21% of our virulence-gene-associated isolates) harboured stx1, stx2 or eae. Ovine cheeses in Slovakia are highly contaminated with E. coli including potentially pathogenic strains capable of causing intestinal and/or extra-intestinal diseases, and thus may pose a threat to public health while unpasteurized.

Keywords: ExPEC; PCR; STEC; pathogenic potential; phylogenetic grouping.