A Study to Derive Equivalent Mechanical Properties of Porous Materials with Orthotropic Elasticity

Materials (Basel). 2021 Sep 7;14(18):5132. doi: 10.3390/ma14185132.

Abstract

The need for diverse materials has emerged as industry becomes more developed, and there is a need for materials with pores in various industries, including the energy storage field. However, there is difficulty in product design and development using the finite element method because the mechanical properties of a porous material are different from those of a base material due to the pores. Therefore, in this study, a Python program that can estimate the equivalent property of a material with pores was developed and its matching was verified through comparison with the measurement results. For high-efficiency calculation, the pores were assumed to be circular or elliptical, and they were also assumed to be equally distributed in each direction. The material with pores was assumed to be an orthotropic material, and its equivalent mechanical properties were calculated using the equivalent strain and equivalent stress by using the appropriate material property matrix. The material properties of a specimen with the simulated pores were measured using UTM, and the results were compared with the simulation results to confirm that the degree of matching achieved 6.4%. It is expected that this study will contribute to the design and development of a product in the industrial field.

Keywords: equivalent mechanical properties; finite element method; orthotropic elasticity; porosity.