Glibenclamide Nanocrystal-Loaded Bioactive Polymeric Scaffolds for Skin Regeneration: In Vitro Characterization and Preclinical Evaluation

Pharmaceutics. 2021 Sep 14;13(9):1469. doi: 10.3390/pharmaceutics13091469.

Abstract

Skin restoration following full-thickness injury poses significant clinical challenges including inflammation and scarring. Medicated scaffolds formulated from natural bioactive polymers present an attractive platform for promoting wound healing. Glibenclamide was formulated in collagen/chitosan composite scaffolds to fulfill this aim. Glibenclamide was forged into nanocrystals with optimized colloidal properties (particle size of 352.2 nm, and polydispersity index of 0.29) using Kolliphor as a stabilizer to allow loading into the hydrophilic polymeric matrix. Scaffolds were prepared by the freeze drying method using different total polymer contents (3-6%) and collagen/chitosan ratios (0.25-2). A total polymer content of 3% at a collagen/chitosan ratio of 2:1 (SCGL3-2) was selected based on the results of in vitro characterization including the swelling index (1095.21), porosity (94.08%), mechanical strength, rate of degradation and in vitro drug release. SCGL3-2 was shown to be hemocompatible based on the results of protein binding, blood clotting and percentage hemolysis assays. In vitro cell culture studies on HSF cells demonstrated the biocompatibility of nanocrystals and SCGL3-2. In vivo studies on a rat model of a full-thickness wound presented rapid closure with enhanced histological and immunohistochemical parameters, revealing the success of the scaffold in reducing inflammation and promoting wound healing without scar formation. Hence, SCGL3-2 could be considered a potential dermal substitute for skin regeneration.

Keywords: bioactive; chitosan; collagen; glibenclamide; nanocrystals; scaffold; wound healing.