Energy: Protein Ratio in Ruminants: Insights from the Intragastric Infusion Technique

Animals (Basel). 2021 Sep 15;11(9):2700. doi: 10.3390/ani11092700.

Abstract

Studies on energy:protein ratio in ruminants are constrained by rumen fermentation since it governs nutrient metabolism and the ratio of energy:protein yielding nutrients available for absorption. By circumventing rumen fermentation, the total intragastric infusion technique (IIT) allowed objective quantification of maintenance energy and protein requirements, volatile fatty acid utilisation efficiency, efficiency of energy utilisation for maintenance (Km) and growth (Kf) and the origin of N retention responses to independent variation of energy and protein intake. This review outlines the key IIT findings and whether they are reflected in current feeding systems with implications for different production systems worldwide. Maintenance energy requirements are similar to those derived from comparative slaughter but maintenance N requirements are significantly lower. No differences in utilisation efficiency exist between acetic, propionic and butyric acids. At low energy intakes, endogenous energy reserves are utilised to retain amino acids and fuel substantial tissue protein gains. The use of fasting metabolism to measure the utilisation of nutritionally balanced diets is questioned since it is a glucose-deficient state. Inter-species differences in glucose metabolism appear to exist, suggesting that glucose requirements may be higher in cattle than sheep. The difficulty in predicting nutrient requirements, particularly protein, with any one technique is highlighted.

Keywords: energy:protein; intragastric infusion technique; nitrogen; volatile fatty acids.

Publication types

  • Review