Single Nucleotide Polymorphisms of Immunity-Related Genes and Their Effects on Immunophenotypes in Different Pig Breeds

Genes (Basel). 2021 Aug 31;12(9):1377. doi: 10.3390/genes12091377.

Abstract

Enhancing resistance and tolerance to pathogens remains an important selection objective in the production of livestock animals. Single nucleotide polymorphisms (SNPs) vary gene expression at the transcriptional level, influencing an individual's immune regulation and susceptibility to diseases. In this study, we investigated the distribution of SNP sites in immune-related genes and their correlations with cell surface markers of immune cells within purebred (Taiwan black, Duroc, Landrace and Yorkshire) and crossbred (Landrace-Yorkshire) pigs. Thirty-nine SNPs of immune-related genes, including 11 cytokines, 5 chemokines and 23 Toll-like receptors (TLRs) (interferon-α and γ (IFN-α, γ), tumor necrosis factor-α (TNF-α), granulocyte-macrophage colony-stimulating factor (GM-CSF), Monocyte chemoattractant protein-1 (MCP-1) and TLR3, TLR4, TLR7, TLR8, and TLR9) were selected, and the percentages of positive cells with five cell surface markers of CD4, CD8, CD80/86, MHCI, and MHCII were analyzed. There were 28 SNPs that were significantly different among breeds, particularly between Landrace and Taiwan black. For instance, the frequency of SNP1 IFN-α -235A/G in Taiwan black and Landrace was 11.11% and 96.15%, respectively. In addition, 18 SNPs significantly correlated with the expression of cell surface markers, including CD4, CD8, CD80/86, and MHCII. The percentage of CD4+ (39.27%) in SNP33 TLR-8 543C/C was significantly higher than those in A/C (24.34%), at p < 0.05. Together, our findings show that Taiwan black pigs had a unique genotype distribution, whereas Landrace and Yorkshire had a more similar genotype distribution. Thus, an understanding of the genetic uniqueness of each breed could help to identify functionally important SNPs in immunoregulation.

Keywords: immune cells; immune-related genes; pig; single-nucleotide polymorphism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers
  • Disease Resistance / genetics*
  • Genetic Predisposition to Disease*
  • Immunophenotyping
  • Polymorphism, Single Nucleotide
  • Selective Breeding
  • Sus scrofa / blood
  • Sus scrofa / genetics*
  • Sus scrofa / immunology

Substances

  • Biomarkers