Sophoridine Derivatives Induce Apoptosis and Autophagy to Suppress the Growth of Triple-Negative Breast Cancer through Inhibition of mTOR Signaling

ChemMedChem. 2022 Jan 5;17(1):e202100434. doi: 10.1002/cmdc.202100434. Epub 2021 Oct 12.

Abstract

In order to improve the antitumor potency and therapeutic margins of natural product sophoridine, its novel nitrogen mustard carbamate derivatives were designed and synthesized. In screening their in vitro activity, we found all the tested compounds were more potent against the highly aggressive triple-negative breast cancer cell line MDA-MB-231. Cellular functional assays showed that representative compounds could induce G1-phase arrest and trigger apoptosis, evidenced by the alteration of Bax, Bcl-2, caspase-3 and PARP levels. Furthermore, these compounds significantly enhanced the autophagic flux with increased expression of LC3-II and Beclin-1, as well as decreased level of p62, which may attribute to simultaneously inhibition of the phosphorylation of p70S6K, 4E-BP1 and AKT, the key substrates of the mTOR signaling pathway. In vivo, two compounds revealed potent antitumor activity in mice bearing MDA-MB-231. Altogether, our work describes novel leads to yield more potent chemotherapeutics against triple-negative breast cancers, possibly mesenchymal stem-like subtype.

Keywords: autophagy; mTOR; sophoridine; triple-negative breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaloids / chemical synthesis
  • Alkaloids / chemistry
  • Alkaloids / pharmacology*
  • Animals
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Humans
  • Matrines
  • Mice
  • Molecular Structure
  • Quinolizines / chemical synthesis
  • Quinolizines / chemistry
  • Quinolizines / pharmacology*
  • Signal Transduction / drug effects
  • Structure-Activity Relationship
  • TOR Serine-Threonine Kinases / antagonists & inhibitors*
  • TOR Serine-Threonine Kinases / metabolism
  • Triple Negative Breast Neoplasms / drug therapy*
  • Triple Negative Breast Neoplasms / metabolism
  • Triple Negative Breast Neoplasms / pathology

Substances

  • Alkaloids
  • Antineoplastic Agents
  • Quinolizines
  • MTOR protein, human
  • TOR Serine-Threonine Kinases
  • Matrines