Trypanosoma spp. Neobats: Insights about those poorly known trypanosomatids

Int J Parasitol Parasites Wildl. 2021 Sep 10:16:145-152. doi: 10.1016/j.ijppaw.2021.09.003. eCollection 2021 Dec.

Abstract

Bats are infected with several trypanosomatid species; however, assessing the diversity of this interaction remains challenging since there are species apparently unable to grow in conventional culture media. Accordingly, the ecology and biology of the Molecular Operational Taxonomic Units (MOTUs) Trypanosoma spp. Neobats are unknown. Therefore, we performed the molecular characterization targeting the 18S small subunit rDNA from the blood clot of 280 bats of three Brazilian regions (Paraíba, Rio de Janeiro and Acre states), bypassing the selective pressure of hemoculture. From 68 (24%) positive blood clot samples, we obtained 49 satisfactory sequences. Of these successfully sequenced results, T. spp. Neobats (1, 3 and 4) represented 67%, with the most abundant T. sp. Neobat 4 (53%). Our results show: (1) high abundance and wide geographic range of T. sp. Neobat 4, restricted to Carollia bats; (2) high infection rate of T. sp. Neobat 4 in Carollia perspicillata populations (mean 26%); (3) infection with the monoxenous Crithidia mellificae; and (4) a new MOTU (T. sp. Neobat 5) in Artibeus cinereus, positioning in the Trypanosoma wauwau clade. These data corroborate the importance of bats as hosts of many Trypanosoma species and C. mellificae. They also show that the diversity of the T. wauwau clade is underestimated and warn about the high magnitude of trypanosomes we overpass with the hemoculture. Our findings combined with previous data show that T. spp. Neobats include host-specific and host-generalist species, probably playing different ecological roles: T. sp. Neobat 1 shows broad host range; T. spp. Neobat 3 and 4 are restricted to Artibeus and Carollia, respectively. Finally, T. Neobat 4 seems to be a well-succeeded parasite, especially within C. perspicillata metapopulations across a wide geographical distribution. This work is a step forward to understand the biology and life history of T. spp. Neobats.

Keywords: Bats; Blood clot; Crithidia; MOTU; Neobat; Specificity; Trypanosoma.