Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency

Mol Cell Toxicol. 2022;18(1):1-8. doi: 10.1007/s13273-021-00171-4. Epub 2021 Sep 20.

Abstract

Background: mRNA vaccines hold great potential as therapeutic techniques against viral infections due to their efficacy, safety, and large-scale production. mRNA vaccines offer flexibility in development as any protein can be produced from mRNA without altering the production or application process.

Objective: This review highlights the iterative optimization of mRNA vaccine structural elements that impact the type, specificity, and intensity of immune responses leading to higher translational potency and intracellular stability.

Results: Modifying the mRNA structural elements particularly the 5' cap, 5'-and 3'-untranslated regions (UTRs), the coding region, and polyadenylation tail help reduce the excessive mRNA immunogenicity and consistently improve its intracellular stability and translational efficiency.

Conclusion: Further studies regarding mRNA-structural elements and their optimization are needed to create new opportunities for engineering mRNA vaccines.

Keywords: 5′ Cap; 5′-and 3′-UTRs; Poly(A) tail, structural modification; mRNA vaccine.

Publication types

  • Review