In Situ Thermometry of Fermionic Cold-Atom Quantum Wires

Phys Rev Lett. 2021 Sep 10;127(11):113602. doi: 10.1103/PhysRevLett.127.113602.

Abstract

We study ensembles of fermionic cold-atom quantum wires with tunable transverse mode population and single-wire resolution. From in situ density profiles, we determine the temperature of the atomic wires in the weakly interacting limit and reconstruct the underlying potential landscape. By varying atom number and temperature, we control the occupation of the transverse modes and study the 1D-3D crossover. In the 1D limit, we observe an increase of the reduced temperature T/T_{F} at nearly constant entropy per particle S/Nk_{B}. The ability to probe individual atomic wires in situ paves the way to quantitatively study equilibrium and transport properties of strongly interacting 1D Fermi gases.