2Ch-2N Square Chalcogen Bonds between Pairs of Radicals: A Case Study of 1,2,3,5-Dichalcogenadiazolyl Derivatives

J Phys Chem A. 2021 Oct 7;125(39):8572-8580. doi: 10.1021/acs.jpca.1c05439. Epub 2021 Sep 24.

Abstract

Specific 2Ch-2N square interactions between pairs of heterocyclic rings have been the target of many recent crystallographic and computational studies. According to our search of the Cambridge Structural Database (CSD), a number of crystal structures of the derivatives of 1,2,3,5-dichalcogenadiazolyl (DChDA) radicals, which consist of 2Ch-2N square motifs in the dimer units, were extracted. On the basis of the CSD survey results, a set of dimeric complexes of DChDA-based radicals with diverse aryl substituents at the 4-position were selected to model such squares. Similar to that in conventional chalcogen bonds, 2Ch-2N square interactions become stronger as the atomic size of chalcogens increases. Both the orbital term and electrostatics contribute significantly to the attraction of these interactions, while the dispersion contribution is small but unneglectable. Some five-membered aryl substituents, such as imidazole, thiazole, and oxazole, produce markedly enhanced square interactions, leading to a pronounced influence on the distribution of spin populations on DChDA rings.