Synthesis of Nanoparticles Fully Made of Hemoglobin with Antioxidant Properties: A Step toward the Creation of Successful Oxygen Carriers

Langmuir. 2021 Oct 5;37(39):11561-11572. doi: 10.1021/acs.langmuir.1c01855. Epub 2021 Sep 23.

Abstract

Transfusion of donor red blood cells (RBCs) is a crucial and widely employed clinical procedure. However, important constraints of blood transfusions include the limited availability of blood, the need for typing and cross-matching due to the RBC membrane antigens, the limited storage lifetime, or the risk for disease transmission. Hence, a lot of effort has been devoted to develop RBC substitutes, which are free from the limitations of donor blood. Despite the potential, the creation of hemoglobin (Hb)-based oxygen carriers is still facing important challenges. To allow for proper tissue oxygenation, it is essential to develop carriers with high Hb loading since Hb comprises about 96% of the RBCs' dry weight. In this work, nanoparticles (NPs) fully made of Hb are prepared by the desolvation precipitation method. Several parameters are screened (i.e., Hb concentration, desolvation ratio, time, and sonication intensity) to finally obtain Hb-NPs with a diameter of ∼568 nm and a polydispersity index (PDI) of 0.2. A polydopamine (PDA) coating is adsorbed to prevent the disintegration of the resulting Hb/PDA-NPs. Due to the antioxidant character of PDA, the Hb/PDA-NPs are able to deplete two harmful reactive oxygen species, namely, the superoxide radical anion and hydrogen peroxide. Such antioxidant protection also translates into minimizing the oxidation of the entrapped Hb to nonfunctional methemoglobin (metHb). This is a crucial aspect since metHb conversion also results in inflammatory reactions and dysregulated vascular tone. Finally, yet importantly, the reported Hb/PDA-NPs are also both hemo- and biocompatible and preserve the reversible oxygen-binding and releasing properties of Hb.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antioxidants
  • Erythrocytes
  • Hemoglobins
  • Nanoparticles*
  • Oxygen*

Substances

  • Antioxidants
  • Hemoglobins
  • Oxygen