Refined Structures of O-Phospho-l-serine and Its Calcium Salt by New Multinuclear Solid-State NMR Crystallography Methods

J Phys Chem B. 2021 Oct 7;125(39):10985-11004. doi: 10.1021/acs.jpcb.1c05587. Epub 2021 Sep 23.

Abstract

O-phospho-l-serine (Pser) and its Ca salt, Ca[O-phospho-l-serine]·H2O (CaPser), play important roles for bone mineralization and were recently also proposed to account for the markedly improved bone-adhesive properties of Pser-doped calcium phosphate-based cements for biomedical implants. However, the hitherto few proposed structural models of Pser and CaPser were obtained by X-ray diffraction, thereby leaving the proton positions poorly defined. Herein, we refine the Pser and CaPser structures by density functional theory (DFT) calculations and contrast them with direct interatomic-distance constraints from two-dimensional (2D) nuclear magnetic resonance (NMR) correlation experimentation at fast magic-angle spinning (MAS), encompassing double-quantum-single-quantum (2Q-1Q) 1H NMR along with heteronuclear 13C{1H} and 31P{1H} correlation NMR experiments. The Pser and CaPser structures before and after refinements by DFT were validated against sets of NMR-derived effective 1H-1H, 1H-31P, and 1H-13C distances, which confirmed the improved accuracy of the refined structures. Each distance set was derived from one sole 2D NMR experiment applied to a powder without isotopic enrichment. The distances were extracted without invoking numerical spin-dynamics simulations or approximate phenomenological models. We highlight the advantages and limitations of the new distance-extraction procedure. Isotropic 1H, 13C, and 31P chemical shifts obtained by DFT calculations using the gauge including projector augmented wave (GIPAW) method agreed very well with the experimental results. We discuss the isotropic and anisotropic 13C and 31P chemical-shift parameters in relation to the previous literature, where most data on CaPser are reported herein for the first time.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calcium*
  • Crystallography
  • Magnetic Resonance Spectroscopy
  • Protons
  • Serine*

Substances

  • Protons
  • Serine
  • Calcium