Computer-Based Decision Tools for Shared Therapeutic Decision-making in Oncology: Systematic Review

JMIR Cancer. 2021 Oct 26;7(4):e31616. doi: 10.2196/31616.

Abstract

Background: Therapeutic decision-making in oncology is a complex process because physicians must consider many forms of medical data and protocols. Another challenge for physicians is to clearly communicate their decision-making process to patients to ensure informed consent. Computer-based decision tools have the potential to play a valuable role in supporting this process.

Objective: This systematic review aims to investigate the extent to which computer-based decision tools have been successfully adopted in oncology consultations to improve patient-physician joint therapeutic decision-making.

Methods: This review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 checklist and guidelines. A literature search was conducted on February 4, 2021, across the Cochrane Database of Systematic Reviews (from 2005 to January 28, 2021), the Cochrane Central Register of Controlled Trials (December 2020), MEDLINE (from 1946 to February 4, 2021), Embase (from 1947 to February 4, 2021), Web of Science (from 1900 to 2021), Scopus (from 1969 to 2021), and PubMed (from 1991 to 2021). We used a snowball approach to identify additional studies by searching the reference lists of the studies included for full-text review. Additional supplementary searches of relevant journals and gray literature websites were conducted. The reviewers screened the articles eligible for review for quality and inclusion before data extraction.

Results: There are relatively few studies looking at the use of computer-based decision tools in oncology consultations. Of the 4431 unique articles obtained from the searches, only 10 (0.22%) satisfied the selection criteria. From the 10 selected studies, 8 computer-based decision tools were identified. Of the 10 studies, 6 (60%) were conducted in the United States. Communication and information-sharing were improved between physicians and patients. However, physicians did not change their habits to take advantage of computer-assisted decision-making tools or the information they provide. On average, the use of these computer-based decision tools added approximately 5 minutes to the total length of consultations. In addition, some physicians felt that the technology increased patients' anxiety.

Conclusions: Of the 10 selected studies, 6 (60%) demonstrated positive outcomes, 1 (10%) showed negative results, and 3 (30%) were neutral. Adoption of computer-based decision tools during oncology consultations continues to be low. This review shows that information-sharing and communication between physicians and patients can be improved with the assistance of technology. However, the lack of integration with electronic health records is a barrier. This review provides key requirements for enhancing the chance of success of future computer-based decision tools. However, it does not show the effects of health care policies, regulations, or business administration on physicians' propensity to adopt the technology. Nevertheless, it is important that future research address the influence of these higher-level factors as well.

Trial registration: PROSPERO International Prospective Register of Systematic Reviews CRD42021226087; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021226087.

Keywords: artificial intelligence; cancer; computer-based; decision support; decision-making; machine learning; oncology; shared decision-making; system; tool; uncertainty.

Publication types

  • Review