Study of feasible and safe condition for total body irradiation using cardiac implantable electronic devices

J Radiat Res. 2021 Sep 20:rrab088. doi: 10.1093/jrr/rrab088. Online ahead of print.

Abstract

Cardiac implantable electronic devices (CIEDs) were believed to have a tolerance dose and that direct irradiation has to be avoided. Thus, no clinical guidelines have mentioned the feasibility of total body irradiation (TBI) with a CIED directly. The purpose of this work was to study a feasible and safe condition for TBI using a CIED. Eighteen CIEDs were directly irradiated by a 6-MV X-ray beam, where a non-neutron producible beam was employed for the removal of any neutron contribution to CIED malfunction. Irradiation up to 10 Gy in accumulated dose was conducted with a 100-cGy/min dose rate, followed by up to 20 Gy at 200 cGy/min. An irradiation test of whether inappropriate ventricular shock therapy was triggered or not was also performed by using a 6-MV beam of 5, 10, 20 and 40 cGy/min to two CIEDs. No malfunction was observed during irradiation up to 20 Gy at 100 and 200 cGy/min without activation of shock therapy. These results were compared with typical TBI, suggesting that a CIED in TBI will not encounter malfunction because the prescribed dose and the dose rate required for TBI are much safer than those used in this experiment. Several inappropriate shock therapies were, however, observed even at 10 cGy/min if activated. The present result suggested that TBI was feasible and safe if a non-neutron producible beam was employed at low dose-rate without activation of shock therapy, where it was not inconsistent with clinical and non-clinical data in the literature. The feasibility of TBI while using a CIED was discussed for the first time.

Keywords: cardiac implantable electronic devices (CIED); cardiac resynchronization therapy (CRT); implantable cardioverter defibrillator (ICD); pacemaker (PM); total body irradiation (TBI).

Grants and funding