Recent advances in Penicillium expansum infection mechanisms and current methods in controlling P. expansum in postharvest apples

Crit Rev Food Sci Nutr. 2023;63(15):2598-2611. doi: 10.1080/10408398.2021.1978384. Epub 2021 Sep 20.

Abstract

One of the most significant challenges associated with postharvest apple deterioration is the blue mold caused by Penicillium expansum, which leads to considerable economic losses to apple production industries. Apple fruits are susceptible to mold infection owing to their high nutrient and water content, and current physical control methods can delay but cannot completely inhibit P. expansum growth. Biological control methods present promising alternatives; however, they are not always cost effective and have application restrictions. P. expansum infection not only enhances disease pathogenicity, but also inhibits the expression of host-related defense genes. The implementation of new ways to investigate and control P. expansum are expected with the advent of omics technology. Advances in these techniques, together with molecular biology approaches such as targeted gene deletion and whole genome sequencing, will lead to a better understanding of the P. expansum infectious machinery. Here, we review the progress of research on the blue mold disease caused by P. expansum in apples, including physiological and molecular infection mechanisms, as well as various methods to control this common plant pathogen.

Keywords: Apples; Penicillium expansum; control methods; future prospects; molecular mechanisms; physiological mechanisms.

Publication types

  • Review

MeSH terms

  • Fruit
  • Malus*
  • Penicillium* / metabolism
  • Plants

Supplementary concepts

  • Penicillium expansum