Icaritin induces cellular senescence by accumulating the ROS production and regulation of the Jak2/Stat3/p21 pathway in imatinib-resistant, chronic myeloid leukemia cells

Am J Transl Res. 2021 Aug 15;13(8):8860-8872. eCollection 2021.

Abstract

In patients with chronic myelogenous leukemia (CML), resistance to tyrosine kinase inhibitor (TKI) therapy, like imatinib, can cause death, progression to accelerated phase or blast crises, and the need for maintenance treatment. Icaritin is an active component of the genus Epimedium, a traditional Chinese herbal medicine. Icaritin has been shown to notably inhibit the growth of CML cells. To explore the potential mechanisms of inhibiting growth and inducing cell senescence in imatinib-resistant CML cells by icaritin, MTT assays were used to assess the cell viability. The apoptosis and cell cycle arrest were evaluated using flow cytometry. The SA-β-Gal staining and the intracellular reactive oxygen species (ROS) production were measured using flow cytometry to detect the senescent cells. qRT-PCR was conducted to assess the expression of the cell cycle-associated proteins, and western blotting was used to analyze the expressions of the JAK2 and STAT3 phosphorylation proteins. The results showed that icaritin inhibited cell growth and induced cell senescence in imatinib-resistant CML cells, which is associated with the regulation of the JAK2/STAT3/P21 axis and accompanied by the accumulation of ROS. Our data suggest that icaritin is a promising therapeutic strategy for the treatment of imatinib-resistant patients with CML.

Keywords: Icaritin; Jak2/Stat3/p21 pathway; imatinib-resistant chronic myeloid leukemia; reactive oxygen species; senescence.