Diabetic pregnancy as a novel risk factor for cardiac dysfunction in the offspring-the heart as a target for fetal programming in rats

Diabetologia. 2021 Dec;64(12):2829-2842. doi: 10.1007/s00125-021-05566-5. Epub 2021 Sep 18.

Abstract

Aims/hypothesis: The impact of diabetic pregnancy has been investigated extensively regarding offspring metabolism; however, little is known about the influence on the heart. We aimed to characterise the effects of a diabetic pregnancy on male adult offspring cardiac health after feeding a high-fat diet in an established transgenic rat model.

Methods: We applied our rat model for maternal type 2 diabetes characterised by maternal insulin resistance with hyperglycaemia and hyperinsulinaemia. Diabetes was induced preconceptionally via doxycycline-induced knock down of the insulin receptor in transgenic rats. Male wild-type offspring of diabetic and normoglycaemic pregnancies were raised by foster mothers, followed up into adulthood and subgroups were challenged by a high-fat diet. Cardiac phenotype was assessed by innovative speckle tracking echocardiography, circulating factors, immunohistochemistry and gene expression in the heart.

Results: When feeding normal chow, we did not observe differences in cardiac function, gene expression and plasma brain natriuretic peptide between adult diabetic or normoglycaemic offspring. Interestingly, when being fed a high-fat diet, adult offspring of diabetic pregnancy demonstrated decreased global longitudinal (-14.82 ± 0.59 vs -16.60 ± 0.48%) and circumferential strain (-23.40 ± 0.57 vs -26.74 ± 0.34%), increased relative wall thickness (0.53 ± 0.06 vs 0.37 ± 0.02), altered cardiac gene expression, enlarged cardiomyocytes (106.60 ± 4.14 vs 87.94 ± 1.67 μm), an accumulation of immune cells in the heart (10.27 ± 0.30 vs 6.48 ± 0.48 per fov) and higher plasma brain natriuretic peptide levels (0.50 ± 0.12 vs 0.12 ± 0.03 ng/ml) compared with normoglycaemic offspring on a high-fat diet. Blood pressure, urinary albumin, blood glucose and body weight were unaltered between groups on a high-fat diet.

Conclusions/interpretation: Diabetic pregnancy in rats induces cardiac dysfunction, left ventricular hypertrophy and altered proinflammatory status in adult offspring only after a high-fat diet. A diabetic pregnancy itself was not sufficient to impair myocardial function and gene expression in male offspring later in life. This suggests that a postnatal high-fat diet is important for the development of cardiac dysfunction in rat offspring after diabetic pregnancy. Our data provide evidence that a diabetic pregnancy is a novel cardiac risk factor that becomes relevant when other challenges, such as a high-fat diet, are present.

Keywords: Cardiovascular diseases; Diabetes mellitus; Diet; Echocardiography; High-fat; Hyperglycaemia; Infant; Maternal inheritance; Pregnancy; Rats; Transgenic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Type 2* / genetics
  • Diet, High-Fat / adverse effects
  • Female
  • Fetal Development
  • Heart Diseases*
  • Male
  • Myocytes, Cardiac
  • Pregnancy
  • Prenatal Exposure Delayed Effects*
  • Rats
  • Rats, Sprague-Dawley
  • Risk Factors