Impacts of marine heatwaves on pearl oysters are alleviated following repeated exposure

Mar Pollut Bull. 2021 Dec;173(Pt A):112932. doi: 10.1016/j.marpolbul.2021.112932. Epub 2021 Sep 14.

Abstract

Marine heatwaves (MHWs) have occurred with increasing duration, frequency and intensity in the past decade in the South China Sea, posing serious threats to marine ecosystems and fisheries. However, the impact of MHWs on marine bivalves - one of the most ecologically and economically important fauna in coastal ecosystems - remains largely unknown. Here, we investigated physiological responses of the pearl oyster, Pinctada maxima inhabiting a newly identified climate change hotspot (Beibu Gulf, South China Sea) to short-lasting and repeatedly-occurring MHWs scenarios. Following 3-day exposure to short-lasting MHWs scenarios with water temperature rapidly arising from 24 °C to 28 °C, 32 °C and 36 °C, respectively, mortality rates of pearl oysters increased, and especially they suffered 100% mortality at 36 °C. Activities of enzymes including acid phosphatase (ACP), alkaline phosphatase (AKP), glutathione (GSH) and level of malondialdehyde (MDA) increased significantly with increasing intensity and duration of MHWs, indicating thermal stress responses. When exposed to repeatedly-occurring MHWs scenarios, mortality rates of pearl oysters increased slightly, and thermal stress responses were alleviated, as exemplified by significant decreases in ACP, AKP, GSH and MDA activities compared with those during short-lasting MHWs scenarios, demonstrating the potential of P. maxima to acclimate rapidly to MHWs. These findings advance our understanding of how marine bivalves respond to MHWs scenarios varying in duration, frequency, and intensity.

Keywords: Acclimation and adaptation; Bivalves; Climate change; Marine heatwaves; Pinctada maxima.

MeSH terms

  • Animals
  • Climate Change
  • Ecosystem
  • Fisheries
  • Pinctada*
  • Temperature