Ambient air pollution and COVID-19 risk: Evidence from 35 observational studies

Environ Res. 2022 Mar;204(Pt B):112065. doi: 10.1016/j.envres.2021.112065. Epub 2021 Sep 15.

Abstract

Background and aims: The coronavirus disease 2019 (COVID-19) pandemic is severely threatening and challenging public health worldwide. Epidemiological studies focused on the influence of outdoor air pollution (AP) on COVID-19 risk have produced inconsistent conclusions. We aimed to quantitatively explore this association using a meta-analysis.

Methods: We searched for studies related to outdoor AP and COVID-19 risk in the Embase, PubMed, and Web of Science databases. No language restriction was utilized. The search date entries were up to August 13, 2021. Pooled estimates and 95% confidence intervals (CIs) were obtained with random-/fixed-effects models. PROSPERO registration number: CRD42021244656.

Results: A total of 35 articles were eligible for the meta-analysis. For long-term exposure to AP, COVID-19 incidence was positively associated with 1 μg/m3 increase in nitrogen dioxide (NO2; effect size = 1.042, 95% CI 1.017-1.068), particulate matter with diameter <2.5 μm (PM2.5; effect size = 1.056, 95% CI 1.039-1.072), and sulfur dioxide (SO2; effect size = 1.071, 95% CI 1.002-1.145). The COVID-19 mortality was positively associated with 1 μg/m3 increase in nitrogen dioxide (NO2; effect size = 1.034, 95% CI 1.006-1.063), PM2.5 (effect size = 1.047, 95% CI 1.025-1.1071). For short-term exposure to air pollutants, COVID-19 incidence was positively associated with 1 unit increase in air quality index (effect size = 1.001, 95% CI 1.001-1.002), 1 μg/m3 increase NO2 (effect size = 1.014, 95% CI 1.011-1.016), particulate matter with diameter <10 μm (PM10; effect size = 1.005, 95% CI 1.003-1.008), PM2.5 (effect size = 1.003, 95% CI 1.002-1.004), and SO2 (effect size = 1.015, 95% CI 1.007-1.023).

Conclusions: Outdoor air pollutants are detrimental factors to COVID-19 outcomes. Measurements beneficial to reducing pollutant levels might also reduce the burden of the pandemic.

Keywords: Air pollution; COVID-19 incidence; COVID-19 mortality; Meta-analysis; Observational study.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air Pollution* / adverse effects
  • COVID-19*
  • Environmental Exposure / analysis
  • Humans
  • Particulate Matter / toxicity
  • SARS-CoV-2

Substances

  • Particulate Matter