Quantum Speed Limit Quantified by the Changing Rate of Phase

Phys Rev Lett. 2021 Sep 3;127(10):100404. doi: 10.1103/PhysRevLett.127.100404.

Abstract

The quantum speed limit is important in determining the minimum evolution time of a quantum system, and thus is essential for quantum community. In this Letter, we derive a novel unified quantum speed limit bound for Hermitian and non-Hermitian quantum systems. The bound is quantified by the changing rate of phase of the quantum system, which represents the transmission mode of the quantum states over their evolution. The bound leads to further insights beyond the previous bounds on concrete evolution modes of the quantum system, such as horizontal or parallel transition or horizontal joining of the two quantum states in Hilbert space. The bound is linked to the feasibility of the evolutions of the state vectors, and provides a tighter upper bound. In addition, the generalized Margolus-Levitin bound is discussed.