Heat shock treatment maintains the quality attributes of postharvest jujube fruits and delays their senescence process during cold storage

J Food Biochem. 2021 Oct;45(10):e13937. doi: 10.1111/jfbc.13937. Epub 2021 Sep 16.

Abstract

The effects of heat shock (HT), 1-methylcyclopropene (1-MCP), or their combination (HT + 1-MCP) on the quality of fresh jujube fruits during cold storage were studied. Among them, HT showed the best preservation effect on jujube fruits, which was more effective than others in inhibiting the increase of red index, decay incidence, and weight loss and delaying the decrease of firmness, soluble solids content (SSC), titratable acidity (TA), and ascorbic acid (AsA) content. Besides, it could delay the degradation rate of the cell wall to maintain the integrity of cell membrane, and keep the high activity of active oxygen scavenging enzymes. During cold storage, malondialdehyde (MDA) content and relative electrolyte leakage (REL) of the HT group were significantly lower than those of the control group, 1-MCP, and HT + 1-MCP group (p < .05), while superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities were significantly higher than those of other groups (p < .05). It was concluded that the postharvest HT treatment could effectively delay the senescence and decay of jujube fruits. PRACTICAL APPLICATIONS: Jujube fruits have high nutritional value used for food and medicine. However, they are not tolerant to storage after harvest, resulting in high economic losses. Therefore, it is of great significance to find a suitable method to maintain the quality of jujube fruits. Our results revealed the effect of HT, 1-MCP, and their combination on the quality maintenance of jujube fruits, and found that HT could effectively maintain the quality of them, which could be used as an effective method for keeping jujube fruits fresh.

Keywords: Ziziphus jujuba Mill; cold storage; delay senescence; enzyme activity; fruit quality; heat shock treatment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalase
  • Fruit
  • Heat-Shock Response
  • Nutritive Value
  • Ziziphus*

Substances

  • Catalase