The mechanics of mitotic chromosomes

Q Rev Biophys. 2021 Sep 17:54:e10. doi: 10.1017/S0033583521000081.

Abstract

Condensation and faithful separation of the genome are crucial for the cellular life cycle. During chromosome segregation, mechanical forces generated by the mitotic spindle pull apart the sister chromatids. The mechanical nature of this process has motivated a lot of research interest into the mechanical properties of mitotic chromosomes. Although their fundamental mechanical characteristics are known, it still remains unclear how these characteristics emerge from the structure of the mitotic chromosome. Recent advances in genomics, computational and super-resolution microscopy techniques have greatly promoted our understanding of the chromosomal structure and have motivated us to review the mechanical characteristics of chromosomes in light of the current structural insights. In this review, we will first introduce the current understanding of the chromosomal structure, before reviewing characteristic mechanical properties such as the Young's modulus and the bending modulus of mitotic chromosomes. Then we will address the approaches used to relate mechanical properties to the structure of chromosomes and we will also discuss how mechanical characterization can aid in elucidating their structure. Finally, future challenges, recent developments and emergent questions in this research field will be discussed.

Keywords: Chromatin; DNA–protein interactions; elasticity; mitotic chromosomes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Chromatids*
  • Chromosome Segregation
  • Mitosis*
  • Spindle Apparatus