CORE-MD II: A fast, adaptive, and accurate enhanced sampling method

J Chem Phys. 2021 Sep 14;155(10):104114. doi: 10.1063/5.0063664.

Abstract

In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD II). The CORE-MD II technique relies, in part, on partitioning of the entire pathway into short trajectories that we refer to as instances. The sampling within each instance is accelerated by adaptive path-dependent metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC) sampling between the different states that have been accessed during each instance. Through the combination of the partition of the total simulation into short non-equilibrium simulations and the kMC sampling, the CORE-MD II method is capable of sampling protein folding without any a priori definitions of reaction pathways and additional parameters. In the validation simulations, we applied the CORE-MD II on the dialanine peptide and the folding of two peptides: TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular Dynamics (MD), 1 µs replica exchange MD (REMD), and CORE-MD I simulations, we find that the level of convergence of the CORE-MD II method is improved by a factor of 8.8, while the CORE-MD II method reaches acceleration factors of ∼120. In the CORE-MD II simulation of TrpZip2, we observe the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method is broadly applicable for MD simulations and is not restricted to simulations of protein folding or even biomolecules but also applicable to simulations of protein aggregation, protein signaling, or even materials science simulations.

MeSH terms

  • Kinetics
  • Molecular Dynamics Simulation*
  • Monte Carlo Method
  • Protein Conformation
  • Proteins / chemistry*

Substances

  • Proteins