Temporal dynamics of mixed litter humification in an alpine treeline ecotone

Sci Total Environ. 2022 Jan 10:803:150122. doi: 10.1016/j.scitotenv.2021.150122. Epub 2021 Sep 4.

Abstract

Loss of plant diversity affects mountain ecosystem properties and processes, yet few studies have focused on the impact of plant function type deficiency on mixed litter humification. To fill this knowledge gap, we conducted a 1279-day litterbag decomposition experiment with six plant functional types of foliar litter to determine the temporal dynamic characteristics of mixed litter humification in a coniferous forest (CF) and an alpine shrubland (AS). The results indicated that the humus concentrations, the net accumulations and their relative mixed effects (RME) of most types were higher in CF than those in AS at 146 days, and humus net accumulations fell to approximately -80% of the initial level within 1279 days. The RME of the total humus and humic acid concentrations exhibited a general change from synergistic to antagonistic effects over time, but the mixing of single plant functional type impeded the formation of fulvic acid due to consistently exhibited antagonistic effects. Ultimately, correlation analysis indicated that environmental factors (temperature, snow depth and freeze-thaw cycles) significantly hindered litter humification in the early stage, while some initial quality factors drove this process at a longer scale. Among these aspects, the concentrations of zinc, copper and iron, as well as acid-unhydrolyzable residue (AUR):nitrogen and AUR:phosphorous, stimulated humus accumulation, while water-soluble extractables, potassium, magnesium and aluminium hampered it. Deficiencies in a single plant functional type and vegetation type variations affected litter humification at the alpine treeline, which will further affect soil carbon sequestration, which is of great significance for understanding the material circulation of alpine ecosystems.

Keywords: Initial litter quality; Litter humification; Plant functional type; Relative mixed effects; Temporal dynamics.

MeSH terms

  • Ecosystem*
  • Forests
  • Plant Leaves*
  • Seasons
  • Snow
  • Soil

Substances

  • Soil