Charged-particle chaotic dynamics in rotational discontinuities

Phys Rev E. 2021 Aug;104(2-2):025208. doi: 10.1103/PhysRevE.104.025208.

Abstract

The interplanetary plasma is characterized by a high level of complexity over a broad range of spatial scales. Spacecraft have detected a large variety of embedded structures that have been identified as discontinuities in the magnetic field vector. They can be either generated within the solar corona and advected by the plasma flow or locally generated as a result of the turbulent cascade of the solar wind turbulence. Since magnetic field fluctuations and structures influence the energetic particle propagation, here we set up a numerical model to study the interaction between charged particles and an ideal magnetohydrodynamics rotational discontinuity. This interaction is strongly influenced by the model parameters, such as the rotation angle of the discontinuity, the orientation of the mean-field direction with respect to the normal to the discontinuity direction, the initial particle pitch angle, and the initial particle gyrophase. Numerical results clearly show that the motion of particles crossing the discontinuity is extremely complex and highly sensitive to the initial conditions of the system, with transitions to a chaotic behavior. We find that particles can be temporarily trapped in rotational discontinuity and that the trapping times have a nearly power-law distribution. Also, the separatrix in the initial conditions phase space between crossing and noncrossing trajectories has a fractal structure. Implications for energetic particle propagation in space plasmas are discussed.