Investigation of vanadia-alumina catalysts with solid-state NMR spectroscopy and DFT

Phys Chem Chem Phys. 2021 Sep 15;23(35):19352-19363. doi: 10.1039/d1cp03297f.

Abstract

In this work, isolated surface sites of vanadium oxide on the alumina surface were modeled and compared to experimental data obtained with 51V Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy. The geometry of the centers on the (100), (110), and (111) planes of the spinel structure and (010) monoclinic alumina was modeled using density functional theory (DFT); their 51V NMR parameters were calculated using the Gauge-Including Projector Augmented Wave (GIPAW) method. The comparison of the simulated theoretical spectra with the experimental ones made it possible to find the sites that are likely present on the surface of real catalysts. The minimum energy pathways of propane oxidative dehydrogenation to propene were calculated for the dioxovanadium site in order to estimate its activity.