Efficient organic solar cells with superior stability based on PM6:BTP-eC9 blend and AZO/Al cathode

iScience. 2021 Aug 24;24(9):103027. doi: 10.1016/j.isci.2021.103027. eCollection 2021 Sep 24.

Abstract

Although efficiency over 18% has been achieved, the real application of organic solar cells is still impeded by inferior stability because of degradation and limited studies. Here we report efficient normal structure organic solar cells delivering promising stability under different conditions, based on PM6:BTP-eC9 blend and AZO/Al cathode. The impact of cathode on device stability is systematically studied by screening the leading electron transporting layers i.e., AZO, PFN-Br, PDINN, and metal electrodes (Al and Ag). Strong correlation between cathode and stability is demonstrated. The optimal AZO/Al-cathode device delivers the best efficiency of 15.76%, with shelf-stability of T83 > 1,200 h, thermal stability of T60 > 300 h, and MPP operational stability of T87 > 500 h. As far as we know, this is the best stability achieved for PM6:Y6/derivative cells in literature so far, based on well-studied simple cathode system and without any tailoring/dopant for the active blend.

Keywords: Energy engineering; Energy materials; Polymer chemistry.