The Anti-Proliferative Lichen-Compound Protolichesterinic Acid Inhibits Oxidative Phosphorylation and Is Processed via the Mercapturic Pathway in Cancer Cells

Planta Med. 2022 Sep;88(11):891-898. doi: 10.1055/a-1579-6454. Epub 2021 Sep 14.

Abstract

The lichen compound protolichesterinic acid (PA) has an anti-proliferative effect against several cancer cell lines of different origin. This effect cannot be explained by the known inhibitory activity of PA against 5- and 12-lipoxygenases. The aim was therefore to search for mechanisms for the anti-proliferative activity of PA. Two cancer cell lines of different origin, both sensitive to anti-proliferative effects of PA, were selected for this study, T-47D from breast cancer and AsPC-1 from pancreatic cancer. Morphological changes were assessed by transmission electron microscopy, HPLC coupled with TOF spectrometry was used for metabolomics, mitochondrial function was measured using the Agilent Seahorse XFp Real-time ATP assay and glucose/lactate levels by radiometry. Levels of glutathione, NADP/NADPH and reactive oxygen species [ROS] were measured by luminescence. Following exposure to PA both cell lines showed structural changes in mitochondria that were in line with a measured reduction in oxidative phosphorylation and increased glycolysis. These changes were more marked in T-47D, which had poorer mitochondrial function at baseline. PA was processed and expelled from the cells via the mercapturic pathway, which consumes glutathione. Nevertheless, glutathione levels were increased after 24 hours of exposure to PA, implying enhanced synthesis. Redox balance was not much affected and ROS levels were not increased. We conclude that PA is metabolically processed and expelled from cells, leading indirectly to increased glutathione levels with minimal effects on redox balance. The most marked effect was on mitochondrial structure and metabolic function implying that effects of PA may depend on mitochondrial fitness.

MeSH terms

  • 4-Butyrolactone / analogs & derivatives
  • Cell Proliferation
  • Glutathione / metabolism
  • Lichens* / chemistry
  • Neoplasms*
  • Oxidation-Reduction
  • Oxidative Phosphorylation
  • Reactive Oxygen Species / metabolism

Substances

  • Reactive Oxygen Species
  • protolichesterinic acid
  • Glutathione
  • 4-Butyrolactone