Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis

Br J Radiol. 2022 Mar 1;95(1131):20210509. doi: 10.1259/bjr.20210509. Epub 2021 Sep 14.

Abstract

Objectives: To perform a systematic review and meta-analysis comparing diagnostic performance and inter reader agreement between PI-RADS v. 2.1 and PI-RADS v. 2 in the detection of clinically significant prostate cancer (csPCa).

Methods: A systematic review was performed, searching the major biomedical databases (Medline, Embase, Scopus), using the keywords "PIRADS 2.1" or "PI RADS 2.1" or "PI-RADS 2.1". Studies reporting on head-to-head diagnostic comparison between PI-RADS v. 2.1 and v. 2 were included. Pooled sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were compared between PI-RADS v. 2.1 and v. 2. Summary receiver operator characteristic graphs were plotted. Analysis was performed for whole gland, and pre-planned subgroup analysis was performed by tumour location (whole gland vs transition zone (TZ)), high b-value DWI (b-value ≥1400 s/mm2), and reader experience (<5 years vs ≥5 years with prostate MRI interpretation). Inter-reader agreement and pooled rates of csPCa for PI-RADS 1-3 lesions were compared between PI-RADS v. 2.1 and v. 2. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool v. 2 (QUADAS-2).

Results: Eight studies (1836 patients, 1921 lesions) were included. Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for whole gland (0.62 vs 0.66, p = 0.02). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.17, 0.31, 0.41). Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for TZ only (0.67 vs 0.72, p = 0.01). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.06, 0.36, 0.17). Amongst studies utilising diffusion-weighted imaging with highest b-value of ≥1400 s/mm2, pooled sensitivities, specificities, PPVs and NPVs were not significantly different (p = 0.52, 0.4, 0.5, 0.47). There were no significant differences in pooled sensitivities, specificities, PPVs and NPVs between PI-RADS v. 2.1 and PI-RADS v. 2 for less-experienced readers (p = 0.65, 0.37, 0.65, 0.81) and for more experienced readers (p = 0.57, 0.90, 0.91, 0.65). For PI-RADS v. 2.1 alone, there were no significant differences in pooled sensitivity, specificity, PPV and NPV between less and more experienced readers (p = 0.38, 0.70, 1, 0.48). Inter-reader agreement was moderate to substantial for both PI-RADS v. 2.1 and v. 2. There were no significant differences between pooled csPCa rates between PI-RADS v. 2.1 and v. 2 for PI-RADS 1-2 lesions (6.6% vs 7.3%, p = 0.53), or PI-RADS 3 lesions (24.1% vs 26.8%, p = 0.28).

Conclusions: Diagnostic performance and inter-reader agreement for PI-RADS v. 2.1 is comparable to PI-RADS v. 2, however the significantly lower specificity of PI-RADS v. 2.1 may result in increased number of unnecessary biopsies.

Advances in knowledge: 1. Compared to PI-RADS v. 2, PI-RADS v. 2.1 has a non-significantly higher sensitivity but a significantly lower specificity for detection of clinically significant prostate cancer.2. PI-RADS v. 2.1 could potentially result in considerable increase in number of negative targeted biopsy rates for PI-RADS 3 lesions, which could have been potentially avoided.

Publication types

  • Comparative Study
  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Predictive Value of Tests
  • Prostatic Neoplasms / diagnostic imaging*
  • Prostatic Neoplasms / pathology
  • Radiology Information Systems*
  • Reproducibility of Results
  • Sensitivity and Specificity