Correlation of active contact location with weight gain after subthalamic nucleus deep brain stimulation: a case series

BMC Neurol. 2021 Sep 13;21(1):351. doi: 10.1186/s12883-021-02383-6.

Abstract

Background: Weight gain (WG) is a frequently reported side effect of subthalamic deep brain stimulation; however, the underlying mechanisms remain unclear. The active contact locations influence the clinical outcomes of subthalamic deep brain stimulation, but it is unclear whether WG is directly associated with the active contact locations. We aimed to determine whether WG is associated with the subthalamic deep brain stimulation active contact locations.

Methods: We enrolled 14 patients with Parkinson's disease who underwent bilateral subthalamic deep brain stimulation between 2013 and 2019. Bodyweight and body mass index were measured before and one year following the surgery. The Lead-DBS Matlab toolbox was used to determine the active contact locations based on magnetic resonance imaging and computed tomography. We also created sweet spot maps for WG using voxel-wise statistics, based on volume of tissue activation and the WG of each patient. Fluorodeoxyglucose-positron emission tomography data were also acquired before and one year following surgery, and statistical parametric mapping was used to evaluate changes in brain metabolism. We examined which brain regions' metabolism fluctuation significantly correlated with increased body mass index scores and positron emission tomography data.

Results: One year after surgery, the body mass index increase was 2.03 kg/m2. The sweet spots for WG were bilateral, mainly located dorsally outside of the subthalamic nucleus (STN). Furthermore, WG was correlated with increased metabolism in the left limbic and associative regions, including the middle temporal gyrus, inferior frontal gyrus, and orbital gyrus.

Conclusions: Although the mechanisms underlying WG following subthalamic deep brain stimulation are possibly multifactorial, our findings suggest that dorsal stimulation outside of STN may lead to WG. The metabolic changes in limbic and associative cortical regions after STN-DBS may also be one of the mechanisms underlying WG. Further studies are warranted to confirm whether dorsal stimulation outside of STN changes the activities of these cortical regions.

Keywords: Deep brain stimulation; Parkinson’s disease; Subthalamic nucleus; Weight gain.

MeSH terms

  • Deep Brain Stimulation*
  • Humans
  • Parkinson Disease* / diagnostic imaging
  • Parkinson Disease* / therapy
  • Positron-Emission Tomography
  • Subthalamic Nucleus* / diagnostic imaging
  • Weight Gain