Mesoporous poorly crystalline α-Fe2O3 with abundant oxygen vacancies and acid sites for ozone decomposition

Sci Total Environ. 2022 Jan 15:804:150161. doi: 10.1016/j.scitotenv.2021.150161. Epub 2021 Sep 7.

Abstract

In this work, mesoporous poorly crystalline hematite (α-Fe2O3) was prepared using mesoporous silica (KIT-6) functionalized with 3-[(2-aminoethyl)amino]propyltrimethoxysilane as a hard template (SMPC-α-Fe2O3). The disordered atomic arrangement structure of SMPC-α-Fe2O3 promoted the formation of oxygen vacancies, which was confirmed using X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (TPD), H2-temperature-programmed reduction (TPR), and in situ diffuse reflectance infrared Fourier transform (DRIFT) analyses. Density functional theory calculations (DFT) also proved that reducing the crystallinity of α-Fe2O3 decreased the formation energy of oxygen vacancies. TPD and in situ DRIFT analyses of NH3 adsorption suggested that the surface acidity of SMPC-α-Fe2O3 was considerably higher than those of mesoporous poorly crystalline α-Fe2O3 (MPC-α-Fe2O3) and highly crystalline α-Fe2O3 (HC-α-Fe2O3). The oxygen vacancies and acid sites formed on α-Fe2O3 surface are beneficial for ozone (O3) decomposition. Compared with MPC-α-Fe2O3 and HC-α-Fe2O3, SMPC-α-Fe2O3 exhibited a higher removal efficiency for 200-ppm O3 at a space velocity of 720 L g-1 h-1 at 25 ± 2 °C under dry conditions. Additionally, in situ DRIFT and XPS results suggested that the accumulation of peroxide (O22-) and the conversion of O22- to lattice oxygen over the oxygen vacancies caused catalyst deactivation. However, O22- could be desorbed completely by continuous N2 purging at approximately 350 °C. This study provides significant insights for developing highly active α-Fe2O3 catalysts for O3 decomposition.

Keywords: Mesoporous structure; Oxygen vacancy; Ozone decomposition; Poorly crystalline structure; α-Fe(2)O(3).

MeSH terms

  • Adsorption
  • Catalysis
  • Oxygen
  • Ozone*
  • Peroxides

Substances

  • Peroxides
  • Ozone
  • Oxygen