Intense overpressurization at basaltic open-conduit volcanoes as inferred by geochemical signals: The case of the Mt. Etna December 2018 eruption

Sci Adv. 2021 Sep 3;7(36):eabg6297. doi: 10.1126/sciadv.abg6297. Epub 2021 Sep 1.

Abstract

The balance between the amount of gas coexisting with mantle-derived magmas at depth and that emitted during intereruptive phases may play a key role in the eruptive potential of volcanoes. Taking the December 2018 eruption at Mt. Etna volcano as a case study, we discuss the geochemical data streams observed. The signals indicate a long-lasting prelude stage to eruption, starting in 2017 and involving magma-fluid accumulation in the deep (>7 km bsl) reservoir, followed by pressure buildup in the system at intermediate depth (5 to 2 km bsl), 6 to 7 months before the eruption. A brief preeruptive phase marks the pressurization at 2 to 3 km below the craters. By comparing the magma and fluid recharge at depth to the measured volcanic degassing from the plume, we provide evidence that Mt. Etna was in a state of extreme overpressurization in the weeks before the onset of the eruption.