Microbiomes and Childhood Malnutrition: What Is the Evidence?

Ann Nutr Metab. 2021 Aug 30:1-13. doi: 10.1159/000519001. Online ahead of print.

Abstract

Both undernutrition and overnutrition continue to represent enduring global health crises, and with the growing implications of both forms of malnutrition occurring simultaneously in individuals and populations (referred to as the double burden of malnutrition), understanding their biological and environmental causes is a primary research and humanitarian necessity. There is growing evidence of a bidirectional association between variation in the gastrointestinal (GI) microbiome and risk of/resilience to malnutrition during early life. For example, studies of siblings who discordantly do or do not develop severe malnutrition show clear differences in the diversity and composition of fecal microbiomes. These differences are transiently lessened during refeeding but re-emerge thereafter. These findings have been somewhat recapitulated using animal models, but small sample sizes and limited range complicate interpretation of results and applicability to humans. Mechanisms driving these differences are currently unknown but likely involve a combination of inflammatory pathways (and perhaps antioxidant status of the host) and effects on nutrient availability, requirements, and utilization by both host and microbe. A less robust literature also suggests that variation in GI microbiome is associated with risk for obesity during childhood. The putative impact of GI microbiomes on malnutrition is likely modified by a variety of important variables such as genetics (likely driven, in part, by evolution), environmental pathogen exposure and its timing, dietary factors, and cultural/societal pattern (e.g., use of antibiotics). Given the growing double burden of malnutrition, this topic demands a focused interdisciplinary approach that expands from merely characterizing differences and longitudinal changes in fecal microbes to examining their functionality during early life. Understanding the complex composition of human milk and how its components impact establishment and maintenance of the recipient infant's GI microbiome will also undoubtedly shed important light on this topic.

Keywords: Growth; Health; Human milk; Human nutrition; Infant; Malnutrition; Microbiome; Obesity.

Publication types

  • Review